Evaluation of Classifier Performance for Multiclass Phenotype Discrimination in Untargeted Metabolomics
نویسندگان
چکیده
Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k-Nearest Neighbors (k-NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k-NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k-NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.
منابع مشابه
Performance Evaluation and Online Realization of Data-driven Normalization Methods Used in LC/MS based Untargeted Metabolomics Analysis
In untargeted metabolomics analysis, several factors (e.g., unwanted experimental &biological variations and technical errors) may hamper the identification of differential metabolic features, which requires the data-driven normalization approaches before feature selection. So far, ≥16 normalization methods have been widely applied for processing the LC/MS based metabolomics data. However, the ...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملmetaXCMS: second-order analysis of untargeted metabolomics data.
Mass spectrometry-based untargeted metabolomics often results in the observation of hundreds to thousands of features that are differentially regulated between sample classes. A major challenge in interpreting the data is distinguishing metabolites that are causally associated with the phenotype of interest from those that are unrelated but altered in downstream pathways as an effect. To facili...
متن کاملInternational Journal of Electronics Communication and Computer Technology
This paper proposes an innovative combinational algorithm to improve the performance in multiclass classification domains. Because the more accurate classifier the better performance of classification, the researchers in computer communities have been tended to improve the accuracies of classifiers. Although a better performance for classifier is defined the more accurate classifier, but turnin...
متن کاملDiscrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics
The influence of organic and conventional farming practices on the content of single nutrients in plants is disputed in the scientific literature. Here, large-scale untargeted LC-MS-based metabolomics was used to compare the composition of white cabbage from organic and conventional agriculture, measuring 1,600 compounds. Cabbage was sampled in 2 years from one conventional and two organic farm...
متن کامل